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We prove that the spectrum defined in terms of the autocorrelation function of 
a harmonic subject to a quasiperiodic perturbation, is, at resonance, transient 
absolutely continuous, covering the whole line. In the nonresonant case, and 
under some supplementary Diophantine condition, it is pure point, coinciding 
with the spectrum of a special almost-periodic function. 
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1. I N T R O D U C T I O N  A N D  S U M M A R Y  

In an interest ing paper ,  Bunimovich et  a l / ~ l  considered a harmonic  osci l la tor  
subject to several types of t ime-dependent  per iodic  and quasiper iodic  
per turba t ions  (see also ref. 2 for the per iodic  case). Such models  are the 
simplest of a class of quan tum systems in external  t ime-varying fields 
(periodic or  quasiper iodic) ,  which have been extensively studied in connec- 
tion with "quan tum chaology"  (see ref. 3 for per iodic  and refs. 4-10 for 
quasiper iodic  per turbat ions) .  In the quasiper iodic  examples they looked at, 
Bunimovich et  al .~l  used the growth of the expectat ion value of the kinetic 
energy as a spectral  indicator.  This quant i ty  does indeed distinguish 
between different types of classical behavior  from the point  of view of 
ergodic theory (e.g., diffusive growth -~t in the case of K-systems, and 
boundedness  in the case of classically ergodic but  not mixing systems), 
but its connect ion with the natura l  not ion of spectrum defined in terms 
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of the autocorrelation function ~1 is not clear [in the periodic case, if 
the spectrum of the unperturbed operator is discrete, and if the Fioquet 
spectrum (ref. 12, Chapter 7) of the perturbed operator is continuous, 
the expectation value of the kinetic energy grows with time t (ref. 13, 
Theorem 7), but the converse does not necessarily hold]. It seemed to us 
therefore interesting to study the spectrum in the sense of ref. 11--which we 
call the autocorrelation spectrum--of models described by Hamiltonians 

H(t)= Ho + V(t) (1.1) 

where 

and 

Ho = O~oa +a (1.2) 

V(t) = (a + + a)[2,  cos(o~, t) + 22 cos(o~2 t)] (1.3) 

where a, a + are the usual annihilation and creation operators of one boson 
(harmonic oscillator) on Fock space ,~. Let $( - )  be the solution of the 
Schr6dinger equation 

i O$(t) H(t)$(t)  (1.4) 
- - T / - -  = 

and with initial value 

~,(0)  = ~, (1 .5)  

Define cjt~ the autocorrelation function Co(t) by 

Co( t )=  lim (O(s), O(s+t))  ds (1.6) 
T ~  ~ 2 T  - T  

where ( . , . )  denotes scalar product on i f ,  conjugate linear in the first 
(left) vector. Assume for the moment that the limit on the r.h.s, of (1.6) 
exists. Then C o is positive-definite, and may therefore be expressed as 

Co(t) = f e i'F d~,(E) (1.7) 

for some positive Stieltjes measure P0, by Bochner's theorem. 1~4~ The 
autocorrelation spectrum of H(t) is I jr) the support of the measure P0. In the 
time-independent (resp. periodic) case, this notion agrees with the usual 
definition (resp. definition of Floquet spectrum). As usual, the ~ ~ ~ such 



Quantum Stability Under Quasiperiodic Perturbat ion 1481 

that/a~ is absolutely continuous (a.c.), singular continuous (s.c.), and pure 
point (p.p.) define subspaces ~ .... ~ .... and ~.p. ,  respectively. 

In Section 2 we consider separately the two cases (a) resonant case 
COo=CO , (with oJ 2 incommensurate with COo), and (b)nonresonant  case 
(O)0, (.O1, (0 2 incommensurate). 

We prove that at resonance the autocorrelation spectrum is transient 
absolutely continuous 1~5~ and covers the whole line, while in the incom- 
mensurate case the spectrum is pure point under some supplementary 
Diophantine condition and coincides with the spectrum (ref. 16, Chap- 
ter VI, pp. 155ff.) of a special almost-periodic function. The basic elements 
in the proof are the theorems (Appendix A) relating the decay of the 
autocorrelation function with the type of spectral measure, and the explicit 
form of the evolution operator acting on a coherent state, which allows an 
explicit evaluation of the limit on the r.h.s, of (1.6), as well as extension of 
the result to other coherent states by the group property of the latter. 
It should be remarked that Combescure ~7~ succeeded in finding the auto- 
correlation spectrum of a two-level system with a perturbation related to 
the Thue-Morse  sequence, a much more difficult problem. The perturba- 
tion in this case is, however, aperiodic, in contrast to the quasiperiodic one 
we consider. 

A much more difficult problem, related to the model of Combescure,~'7~ 
is described by the Hamiltonian 

/~ =/1o + ~'(t) (1.8) 

with 

/7o= Va. (1.9) 

and 

~'( t )  = ) f ( r )  ~.,. (1.10) 

where cr x, a_ are Pauli matrices on C 2 and f is quasiperiodic. 
This model is physically more interesting as a model of a two-level 

atom subject to an external quasiperiodic (e.g., bichromatic) electric 
fieldJS,7 lo) 

In ref. 5 many results concerning this model (and its N-level general- 
ization) were presented. Using a generalized quasienergy operator ~3~ or the 
generalized Floquet operator ~4~ (whose spectral properties are equivalent 
to those of the quasienergy operator as well as to the autocorrelation 
spectrum used in this paper) the authors succeeded in proving the existence 
of pure point as well as continuous spectrum in several special cases. In 
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particular they showed the stability of the pure point spectrum for small 
perturbations. The point spectrum is associated with stable quasiperiodic 
behavior t4'~3~ and the continuous spectrum is a sign of instability, akin 
to (unstable) chaotic behavior (in the atomic case, continuous spectrum 
corresponds to "weaker localization" and hence less "quantum suppression 
of classical chaotic diffusion'~3~). 

The results for the oscillator model (1.1)-(1.3) concerning the point 
spectrum were also obtained in ref. 6, where the continuous spectrum was 
also treated from a "generic" point of view. The present paper gives more 
precise information for the resonant case, where the spectrum is proved to 
be transient absolutely continuous. Moreover, the techniques used here to 
deduce spectral properties from the decay of correlation functions are of 
completely different nature, and we feel that they may be applicable to 
other problems. Finally, we refer to the beautiful review by HowlandJ ~81 

2. THE OSCILLATOR PROBLEM 

Solution of (1.1)-(1.5) may be found explicitly in the interaction 
picture c~9~ in the special case where ~b is a (Glauber) coherent state. For 
clarity, and because the result is crucial, we briefly recall the derivation. Let 

f ( t )  - 21 cos(~ol t) + 22 cos(o92 t) (2.1) 

In the interaction picture i f ( t )=  e-i'n~ the equation for ~b~ is 

iO~-~ t=  V t ( t ) ~ t ( t ) ,  fit(O) = ~b (2.2) 
( 7 /  

where 

Writing 

Vl( t )  = eim~ e - i ,  Ho = f ( t ) (ae- i ,oo,  + a + e ~''~ 

~( t )  - - - i f ( t )  e i'~176 (2.3) 

we may rewrite the equation for ff~ in the form 

d-t- = [fl(t) a + - j~(t) a-] r  (2.4) 

Since the Hamiltonian is linear in the operators of the Weyl-Heisenberg 
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group, the t ime-evolution opera tor  U/, defined by ~,~(t)= U~(t)~,~(0), is 
an opera tor  of the group representation, i.e., 

Ut(t) = e-i~mD(~,(t)) (2.5) 

where r is a real phase, 1' a complex-valued function of t, and 

D(s )  = e ~"+ -~" (2.6) 

Hence, if the initial state is a (Glauber)  coherent state 

Is) =D(s)10)  (2.7) 

where 10) is the vacuum (ground state of the harmonic oscillator), it will 
remain coherent  for all time, and therefore a solution exists of the form 

r At )=e -i~m I s ( t ) )  (2.8) 

In particular,  the expectation value of a in ~p~ is 

( f f , [ a r  = s ( t )  (2.9) 

Differentiating (2.9) and using (2.4), we obtain 

dt-f l( t) ,  s( t )  = so + fl(t')dt' (2.10) 

The phase may  also be found; 1~9~ in our case, it is zero. We now restrict 
ourselves to the special case s o = 0  in (2.10), i.e., where the initial state is 
the vacuum 10). We further omit  the subscript ~ in C~(t) = Cio>(t). In this 
case, (2.8), (2.10), and the alternative formula 

D(s )  = e-1~l'/2e~"+e-~" 

for (2.6) yield for the autocorrelat ion function (1.6) the expression 

lit C(t) = lim ds exp[l(s, t)]  (2.11 ) 

where 

Is(s)l 2 I s ( s +  t)l z 
I(s,.t)= +e+i' '~ (2.12) 

2 2 

and s is given by (2.10) (with So=0) ,  and fl was defined in (2.1), (2.3). We 
now distinguish two cases: (a)09o=09~, with 092 and 09~ incommensurate  
(resonant  case); (b)090, 09~, and o9 2 incommensura te  (nonresonant  case). 
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2.1. Resonant Case 

The I(s, t) given by (2.12) is a rather long expression, but it may be 
expressed in the form (see Appendix C) 

2 "~ " ~ i 2  "J 
2IS- (1 --e  i!'~176 27 )'1 (1 - -e  i!'~176 

I(s, t )= - - - ~ -  2 2 

+ sfo(s, t )+ tf~(s, t)+f,_(s, t) (2.13) 

where for fo, both f j  and f ,  are continuous functions of both arguments, 
uniformly bounded in s, t 

I fo(s, t)l ~Mo,  

and such that 

[f~(s, t)l <~M,, If2(s, t)l ~<M2 (2.14) 

Re'o( ) - -  t = 0  ( 2 . 1 5 )  
\ 03o 

for any integer n. The appearance of quadratic terms in s and t in (2.13) 
is crucial and is only due to the resonance condition. By (2.13) and (2.14) 
we have 

f r r d s  exp[l(s,  t)] 

"- - + tM~ + M 2  ~< exp - t ~ 

[ x dsexp - - - -~-(1-cos  t03o)--~--(1 - 
T 

where 

7 
cos two) + sg(s, t) / 

(2.16) 

g ( s , t ) - R e  f o ( s , t ) = ~ ( s , t ) s i n 0 3 o t + 6 ( s , t ) ( 1 - c o s 0 3 o t )  (2.17) 

(see Appendix C). In (2.17), 7(s, t) and 6(s, t) are linear combinations of 
trigonometric functions [see again (C.3) of Appendix C] and thus 

sup ly(s, t)l = M < ~ ,  sup lf(s, t)l = N < ~ (2.18) 
s ,  I s ,  ! 

We now have two cases: 
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(i) t=2r~n/m o, n integer. Using (2.15) and (2.17), we find, by (2.11) 
and (2.16), 

2~t-' ) 
Ic(t)l ~< a exp - ---j-- + bt (2.19) 

for a, b positive constants, independent of t. 

(ii) t r  o, for all integers n. 

What  may happen here is that, although t # 2 r m / m o ,  t = 2 x n / m o +  
o(n- ' ) .  We write the second integral in (2.16) as s r ( . - - ) + ~ ~  r(- . - ) .  We 
estimate the first one; the second is similar. 

The integral may be written in the form 

I = _ e x p E a ( t ) s 2 + b ( t , s ) s ] d s  (2.20) 

a(t)  - - -~ (1 - cos mot) (2.21a) 

22 
b(t, s) - g(t,  s) - 2 t( 1 - cos mot ) (2.21b) 

where 

Completing the square in (2.20), we obtain 

r +b( t ,  s)'- [- 2~ ./" b(t, s)'~ 2-] '=Io dsexp 4-~-t-~ e x P L -  T ( l - c ~ 1 7 6  J (2.22) 

and hence 

I~< T sup exp ~.~ Eo, r] 22~(1 _ c o s  mot ) g ( t , s ) -  t(l - c o s  mot) 

(2.23) 

Now 

I " ]2 1 2i t(1 - c o s  mot) 
22~(1 _ c o s  mot ) g ( t , s ) - - ~  

g(t,  s) 2 t 32 
- -  1 

- 2 2 ~ ( l _ c o s m o t  ) 2 g ( t , s ) + - ~ t 2 ( 1 - c o s m o t )  (2.24) 
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and 

g(t, s)'- ?(s, t) ~- sin-' 09ot 

22~(1 - cos COot) - 22~(1 - cos COot ) 

?(s, t) 6(s, t) sin % t  

z; 

6(s, 0 2 
+ 2 2 ~  (1 -cos09ot )  (2.25) 

The first term on the r.h.s, of (2.25) is the only "'troublemaker," 
because of the small denominator. However, since sin-' coot = ( t -  2nn/09o) 2 
and 1 - c o s  COot ~-�89 z for t close to 2Tm/09o, no problem arises. 
Hence, by (2.18), (2.23), (2.24), and (2.25). 

l<~cTexp t - (1-cos09ot)+rt  ~< cTexp t2+rt (2.26) 

for some positive constants c and r, independent of t, which implies by 
(2.11) and (2.16) the bound 

IC(t)l <~aexp ( -  2"~;4 fl + bt) (2.27) 

for a, b positive constants independent of t. 
By (2.19), (2.27) and a result of Sinha (Lemma A.I of Appendix A), we 

thus have the following result. 

P r o p o s i t i o n  1. The autocorrelation spectrum in the resonant case 
is transient absolutely continuous, with support the whole real line R. 

2.2. Nonresonant Case 

In this case the structure of the autocorrelation function is simpler and 
appears in Appendix D. The argument of the exponential is of the form 

N Z i= ~ uj(t) vj(s), where each vi(s) is a trigonometric function of type sine or 
cosine of one of the arcs: 209oS, 209~s, 2092s, (090+09~)s, (09o+092)s, 
(09J + 092) s, with coefficients uj(t) which are almost periodic functions of t 
[-linear combinations of sines and cosines of (0~j/), where c~j is linear in the 
frequencies 091,092, <03]. 

Above, N is an integer, independent of t. Expanding the exponentials 
of sines and cosines in terms of the modified Bessel functions, we find 

C(t) lira 1 j . r  ~_ N 
= e ea, . . . . .  5-T _T as Y I-I &, , (u , ( t ) )  ',~,'~,~ (2.28) 

I t | l ) , , . . ,  I t 1 , ' r  = - ~ i = 0 



Quantum Stability Under Quasiperiodic Perturbation 1487 

where e,r, assumes the values -I-1, and 

oSth - O9o(2m o + .-. + mu) + co l(2m z + -.. + mr)  + o92(2m 4 + . . .  + ink) 

(2.29) 

where q, p, and k are integers between 1 and N. To  simplify nota-  
tion, we denote m ' t = 2 m o +  - . - + m  u, m ~ = 2 m 2 +  . . .  + m p ,  and m ~ =  
2/774+-.-+m;r We also assume that  the frequencies to~,co.~,r 3 satisfy 
"good Diophant ine  propert ies" 

Io~r~TI >/C Ir~l-k (2.30) 

for some k ~ ~.  
For  the for thcoming proof  any fixed k suffices, but only if k / > 4  

(taking k integer for simplicity) is the (three-dimensional Lebesgue) 
measure of the co~, r c o s s R  s which do not satisfy (2.30) zero (see, e.g., 
ref. 23). In (2.30), Ir~71-Z,=~ Im;I, and 0 < c <  oo. Notice that 

IL,,,(u,(O)l ~,/'~ ~ .... 
elu~(Ol 

IF(rn, + 1/2)1 
(2.31) 

This estimate follows from (9.6.18), p. 376, of ref. 18, and hence the multiple 
sum in (2.28) converges. 

Proposition 2. The autocorrelat ion spectrum in the nonresonant  
case, when the frequencies have "good Diophant ine  properties" (2.30), is 
pure point. 

To  prove the proposi t ion we divide the sums in (2.28) into two parts: 

where 

c(,)=)Lm ds + E 
- T [ t n O . . . . , I H N ) E . |  I ( m o . . . . , I t t N ) E A  2 

N 

x I-I I,,,,(ui(t)) ,r,,m. 
i = 0  

A, = {(m o ..... m N ) l ~ ' ~ 1 = 0 }  

Az = {(too ..... mN)l r l~'~ r 0 } 

Correspondingly,  we have 

(2.32) 

(2.33a) 

(2.33b) 

C(t)  = f ( t )  + Cl( t )  (2.34) 
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where 

and 

N 

. f ( t )~  ~ I--I I", (ui(t))~t~l ( 2 . 3 5 )  

(mO,...,nL~IJEA I i = 0  

1 N sin(&fflT) 
C l ( t ) =  lim - ~ '  I-I I , , , (ui ( t ) )  e,~, (2.36) 

' -  ~' T o,,o.....,,,~j~a2 i=o ~3fft 

Using now (2.30), we obtain 

OoI, , , , (ui( t ))  e,r, <~ C II,,,,(ui(t))[ r~ Imil (2.37) 
i i = 0  \ i = 0  

where r~ are integers independent of (too ..... raN) and T. By (2.37) and 
(2.31), the sum on the r.h.s, of (2.36) is finite and therefore 

C j ( t ) = 0  (2.38) 

Finally, we use Lemmas  B1 and B2 of Appendix B. By L e m m a  B2 the 
almost  periodic functions form a closed algebra in the L:~-norm. Hence, it 
follows from (2.35), (2.31), and the fact that  each ui is a lmost  periodic that 
f is almost  periodic. Finally, (2.34), (2.35), (2.38), and Lemma B1 show 
that the concept of the spectrum of an almost  periodic function, in this case 
of the special function f ,  agrees with the autocorrelat ion spectrum. 

Hence, by Lemma  B l, the autocorrelat ion spectrum is either pure 
point or empty. The latter occurs when f - - 0 ,  which may be verified not to 
be the case. This concludes the proof  of Proposi t ion 2. 

T h e o r e m .  In the resonant case J~ = ~  .... and in the nonresonant  
case ~ = ~p.p.. 

Proof.  We now come back to (2.10) and notice that  the addit ion 
of the complex number  no does not change the structure of the auto-  
correlation function (2.11), (2.12). The same is true if ~, is a finite linear 
combinat ion ~ t  c~ I~), M < ~ .  Since such are dense if i runs over a 
discrete set (e.g., the yon N e u m a n n  lattice; see ref. 17 and references given 
there), and ~.c. and ~.p .  are (closed) subspaces of ~-, we have proved the 
theorem. 

As a final remark to this section, we have shown that in both the 
resonant and the nonresonant  cases the autocorrelat ion spectrum has 
qualitatively the same structure as the Floquet  spectrum in the periodic 
case. I~-'~ Further,  in the resonant case, the support  of C is "concentrated 
around"  the sequence t,, = 2nn/ogo, which is also expected intuitively. 
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3. C O N C L U S I O N  

The present paper mentions only point spectrum and absolutely con- 
tinuous spectrum, which may give the misleading impression that nothing 
else may occur in this context. However, from refs. 5, 6, and 13 one can 
expect that when co~/o~_, is well approximated by rationals--e.g., a Liouville 
number--the spectrum is singular continuous. This is an open problem. 

Several problems still persist for model (1.8)-(1.10), in particular, a 
rigorous analysis for large coupling. Counterexamples in ref. 5 show that 
results for small coupling cannot be extrapolated in general for large 
perturbations. It would thus be interesting to study the large-coupling limit 
of (1.8)-(1.10). 

As a final remark, comparison with experiment is a delicate matter, 
because even the slightest damping may destroy all the "irregular" charac- 
teristics of chaotic dynamics in resonance fluorescence. *m~ 

APPENDIX  A 

In this appendix we present a iemma used in the text, which concern 
the decay of the Fourier transform of a Stieltjes measure, which may be 
found in a paper by Sinha. I-'1~ 

L e m m a  A1 (Ref. 21, Lemma5, Appendix). Let f be the Fourier 
transform of a positive Stieltjes measure/1: 

f ( t )  = f e "E dl l(E) (A. 1) 

and such that 
f ( t )  = O(e -t~l'l) 

for some fl > 0. Then/~ is absolutely continuous, and has the whole real line 
as its support. 

By ref. 15, if ~ = / ~ ,  the vector ~ is in the transient subspace of ~ .  

R e m a r k .  In a basic paper Sinha 122~ proved that, i f f ( t )  = O ( t -  ~/2 -,:), 
e > 0, then ,u is absolutely continuous. This result is optimal, because there 
exist operators with purely s.c. spectrum, such that f(t)--O(t-~/2+~.), with 
e > 0 arbitrarily small. .221 

APPENDIX  B 

In this appendix we collect some results on almost-periodic functions 
used in the text. The basic reference is KaltznelsonJ 161 The definition of 
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almost periodic function, which we do not repeat here, is given in ref. 16, 
p. 155. 

L e t f b e  the Fourier transform of a Stieltjes measure, as in (A.I). Then, 
by a well-known theorem] '41 

lim 1 f r  d t f ( t ) e - " E = # ( E + O ) - I t ( E - O )  (B.1) 
T ~  2 T  - T  

By (5.6), p. 161 of ref. 16, E belongs to the spectrum of the almost- 
periodic function f (defined in 5.9 of ref. 16, p. 159)if 

iim 1 f r  dt f ( t ) e - m ' v  ~0 (B.2) 
T~,* ~ -T 

By ref. 16, p. 162, the spectrum of an almost periodic function is countable 
(hence there is no continuous part). Therefore, by (B.1) and (B.2), the auto- 
correlation spectrum (defined in Section 1 ) coincides with the spectrum of C 
(the autocorrelation function) in case C is almost-periodic. 

I . emma B1. Let the autocorrelation function C defined in Section 1 
be almost-periodic and not identically zero. Then the autocorrelation 
spectrum is pure point and nonempty. 

Proof. All assertions have been proved above, except for the last one, 
which says that the spectrum of the almost-periodic function f i s  nonempty 
if f ~ 0 .  This follows from the uniqueness theorem (Theorem, p. 163 of 
ref. 16). 

Let A P ( ~ )  denote the set of all almost periodic functions on R. 

Lamina  B2. AP(N)  is a closed subalgebra of L~-(R). 

Proof. See ref. 16, Theorem 5.7, p. 158. 

APPENDIX C 

The expression for ct(s) in (2.10), (2.12) is 

�9 21 ei2.,.,oo ),i S 21 220.) 0 ~(s) = - t - -  " -i , 
4090 - t " 2 - -  4t.o ~ t~; _ O9o z 

• (O3oe -i.~,oo cos sco2 + ooze i'~'~176 sin scoz) (C.I) 

We are going to show that the function fo(s, t) given by (2.13) has the 
property Re(fo(2xn/tno, t ) )=  0, and can be written as l-(2.17) of Section 2-1 

Re f o ( s , t ) = ~ ' ( t , s ) s i n o g o t + ( l - c o s o g o t ) 6 ( s , t )  (C.2a) 
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where 
sup ly(s, t)l = M < oo (C.2b) 

s 
and 

sup(6(s, t ) ) = N <  oo (C.2c) 
s 

The real part  of the term linear in s in the development  of - � 8 9  
I~(s + t)l 2 ] + ei"~176 ~(t + s) furnishes 

( :,s 
( 1 - cos t09o) \4090 cos 2S09o + ~ o  cos 209o(S + t) 

s2,22 {09o[COS s092 sin s09o + cos 09_,(s + t) sin 09o s -  092] +09o-09~ 
x [sin 09_,(s + t) sin 09o(S + t) + sin ~2s sin 09oS] } )  

).~s sin ' 2~s 
+ sin t09o - 4090 2S09o -~ 4090 sin 209o(S + t) 

)~l J.zS 
-t" 09o -- 09~ {09o[COS 092 COS s09 o + COS 092(s + t) COS 09o(S + t)]  

-09,[sin09,_(s+t)sin09o(S+t)+sin09,ssin09oS]}) (C.3) 

Hence (C.2) follows from (C.3), and 

R e f o  s, = 0  
090 / 

is an immediate  [(2.15) of  the main text]  consequence of (C.2a). 

APPENDIX D 

In the nonresonant  case, co(s) in (2.10), (2.12) is given by 

~,(s) = - [09g,~,  + ,~ 09g - ,% 09~ 090-  ,~, 09~090 

+ e -i'~176 cos s091 )]/[(09 8 

- -  ei '~176 09009~ c o s  $091 + ,2,2 oJg COS s o )  2 - -  ),2 09009~ cOS $09 2 

+ i2~098091, sin sw, ] / [ (09o_  w~)(09 0 _092) ] 2  

+ e-iS'~176 sin s09, + i2209o2092 sin s092 

- i22~0~09~ sin s09.,]/[(090 - 09~)(09o z - 09~)] 

822/76/5-6-26 
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Therefore, in I(t, s) given by (2.12), the arcs which arise as arguments of 
the trigonometric functions are of the form (P09o - q09= ), (r~o +__ m092), and 
(vco~ + uog_,), where p, q, r, m, u, and v are integers smaller than or equal 
to 3, and 

N 

I(t, s)= Z vj(s) uj(t) 
j =  1 

where ui(t ! are almost-periodic [linear combinations of sines and cosines 
of (Cti/), where ct i is a linear function of the frequencies 09 1, 09_,, 093] and 
vj(s) is a sine or cosine of one of the previously mentioned arguments. 
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